
Errata master’s thesis

Bart Michels

October 27, 2018

p. 8 [...] holomorphic on U ⊆ C with values in [...] That is, that the limit
[...] exists for all s0 ∈ U .

p. 8 In the theorem: the statement is not wrong, but E(w, s) = φ(s)E(w, 1−
s) is in line with the definition of φ in Theorem 4.10.

p. 21 Remark 3.13: k : R× R→ R

p. 41 Item 3.: L3 should be L3.

p. 49 Below (5.3): it is k which is supported on point pairs at distance at
most R, not K. It is (k ? f)(z) which depends only on values of f(w)
with d(z, w) < R.

p. 49 Second equation: the first and second convolutions should be on the
standard fundamental domain F , but even then; the last equality is
not obvious, because ys is not Γ-invariant and (4.20) does not apply.
We are here implicitly using a ‘local’ version of the Selberg eigenfunc-
tion principle: say k is supported on point pairs at distance 6 R, so
that (k ? f)(z) depends only on values of f(w) for d(w, z) < R. Now
suppose f is a Laplacian eigenfunction on B(z,R) with eigenvalue
s(1− s). (Think f = [α(y)ys]F .) Under this weaker assumption, does
the Selberg eigenfunction principle still hold at z, in the sense that
(k ? f)(z) = k̂(s)f(z)? The answer is yes; the proof of the eigenfunc-
tion principle (3.31) carries through: if f is a Laplacian eigenfunction
in a geodesic ball B(z,R), then so is its radial symmetrization about
z in that ball. Because k is supported on point pairs at distance less
than R, we conclude using

(k ? f)rad(z) = (k ? f radz )(z) = (k ? f(z) · ωs(·, z))(z) = f(z) · k̂(s)

as in the proof of (3.31). In the case of f = [α(y)ys]F , which is a
Laplacian eigenfunction for y large, note that we can take the R in
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the requirement for the support of k independent of z. Indeed, f is a
Laplacian eigenfunction in a ball of radius � log y � 1 about z.

p. 60 Proposition 5.40.: see below.

p. 60–61 The end of the proof of Proposition 5.41: We cannot just combine
those two envelopes. While {f − trunc f : f ∈ H(Γ, s(1 − s))} has a
L2-holomorphic envelope in L2(Y ) (Y = Γ\H), we cannot conclude
that it has a L2-holomorphic envelope with values in the space of
smooth functions W : the dominance principle (5.35) does not apply;
we don’t have a continuous inclusion L2(Y )→W .

To fix this, letX be the sum of L2(Y ) andW . The dominance principle
does apply with the natural continuous inclusions C∞(Y ) ↪→ X and
L2(Y ) ↪→ X (if X is given a sufficiently weak topology, such as L2

loc),
and (5.41) holds with W replaced by X.

p. 61 Corollary 5.42.: Replace W by X. The proof is more delicate now,
as we are no longer working with smooth functions. To begin, we
need to extend the system (5.39) to X. This is no problem; it suffices
to interpret differential operators in the weak sense. The system we
obtain on X still has a unique solution for σ > 1: by elliptic regularity,
a solution f must be a true, smooth function of w. It remains to argue
that f is of polynomial growth. By definition of X, f is the sum of a
smooth polynomial growth function g and a (automatically smooth)
L2 function h. Write the Fourier coefficients1 of f (2.24) as

f̂n(y) = anW0,s−1/2(4π|n|y) + bnW0,s−1/2(−4π|n|y)

for n 6= 0. We want to show that the bn are 0. We have f̂n = ĝn + ĥn.
Because g is of polynomial growth, so is ĝn. Because h is L2, it is L1

and so is ĥn:∫ ∞
0
|ĥn(y)|dy

y2
6

∫ ∞
0

∫ 1

0
|hn(x+ iy)|dxdy

y2
<∞

Thus if bn 6= 0, then W0,s−1/2(−4π|n|y) is the sum of a polynomial
growth function and a L2-function. Contradiction.

Finally, we want to show that the an are not too large. We show that
|an| �ε e

nε Indeed, integrating the expression for f̂n from ε to 2ε gives

|an| �ε exp(O(nε))

∫ 1

0

∫ 2ε

ε
|f(x+ iy)|dxdy

y2

1It is unfortunate that we (have to?) resort to the Fourier–Whittaker expansion.
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where the second factor is finite because f is the sum of a continuous
function and a L2-function. It follows that f is of rapid decay up to
its constant term. But its constant term is a Laplacian eigenfunction,
so f is of polynomial growth.

It follows that a solution of the system over X must lie in W , and the
uniqueness principle applies.

p. 61 Corollary 5.43.: Replace W by X; the proof does not change.

p. 61 The paragraph before (5.44), and the bottom of the page: “All we
know is that they are separately continuous and L2

loc-continuous.”
This is not true. We have that E(w, s) is L2

loc continuous (because
holomorphic) and smooth for fixed s (by elliptic regularity) so that in
particular E(w, s) is a true function, but we do not know that it is
continuous for fixed w! Similarly as in (5.44) we have:∫

H
E(w, s)∂sφ(w, s)dw =

∫
H
∂sE(w, s)φ(w, s)dw

where the derivatives are in the L2
loc-sense (simply by the product rule

in L2
loc). It follows that E(w, s) is holomorphic in the distributional

sense. We show that E(w, s) is (jointly) measurable. It is continuous
(hence measurable) for fixed s. For each n > 0, divide C into squares
of side length 1

n and choose in each square R a point sR. This defines a
sequence En(w, s) = En(w, sR(s)) of measurable pointwise approxima-
tions of E(w, s). It converges for fixed s in L2

loc to E(w, s), hence there
exists a subsequence which converges almost everywhere to E(w, s).
In particular, E(w, s) is measurable. By L2

loc-continuity and Fubini it
is jointly L2

loc, and elliptic regularity implies that (after multiplying by
a suitable complex polynomial in s) E(w, s) is jointly smooth up to a
set of measure 0 in H×U . (Note here that we don’t really need elliptic
regularity for overdetermined systems, since ∆H − s(1 − s) and ∆U

have the same degree: E(w, s) is also annihilated by their sum, which
is elliptic.) Call F (w, s) the function that equals E(w, s) up to a set of
measure 0 and which is jointly smooth. We want to show that E = F
everywhere. We have that E −F is continuous for fixed s. Suppose it
is nonzero at some point (w, s). Then some local L2-norm of E(·, s) is
nonzero. By L2

loc-continuity, that local L2-norm is bounded away from
0 in a neighborhood of s. This contradicts that E − F is zero a.e.

p. 81 Proposition B.22, statement 1.: the last statement is not true: bound-
edness of the partial derivatives does not imply that f is C0

b -smooth;
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one needs the derivatives to be bounded locally independently of s
(e.g. if M is compact). But we don’t use this anywhere.
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